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The magnetic behavior of a type-II superconductor with very short electron mean free
path (dirty limit) near its upper critical field B,,(T) is investigated. A calculation of the
magnetization up to the second order in the difference between B, (T) and the external mag-
netic field is presented which is valid for all temperatures. A triangular and a square lat-
tice of flux lines are considered. A numerical calculation suggests that the triangular lat-
tice remains stable despite the fact that the difference in the thermodynamical potentials
between the two lattices decreases due to these second-order terms.
I. INTRODUCTIGN On the basis of the Ginzburg- Landau theory, 2
Abrikosov showed that a type-II superconductor
The magnetic behavior of type-II superconduc- exhibits a mixed state between the two critical

torswas first explained theoretically by Abrikosov.! magnetic fields B, (T) and B (T) in which the mag-
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netic flux penetrates the specimen in the form of
quantized flux lines. The Ginzburg-Landau equa-
tions were shown by Gorkov® to follow from the
microscopic theory of superconductivity near the
transition temperature T, of the metal in zero
magnetic field, and only there. Many attempts
have therefore been made to generalize Abrikosov’s
work to lower temperatures.* Recently, the vi-
cinity of the upper critical field B, (T) was treated
completely by Eilenberger5 who calculated the
parameters «,(7) and K,(T) numerically for all
temperatures and all electron mean free paths.
These parameters are directly related to the upper
critical field B, (T') and to the slope of the mag-
netization at B (T), respectively. The behavior
in the vicinity of the lower critical field B (T) is
known only near T, and for materials with high

k values.* To the author’s knowledge very little

is known about a generalization of Abrikosov’s
theory to fields well below B .

The present paper deals with the magnetization
of a type-II superconductor near its upper critical
field B_,. Starting from a generalized diffusion
equation derived earlier by the author® the mag-
netization is calculated up to the second order in
the quantity (B,- B.;), where B, denotes the ex-
ternal magnetic field. The calculation is restricted
to dirty superconductors—where our diffusion
equation is valid—within the framework of the
weak-coupling theory of superconductivity. But
our theory is valid for all temperatures.

The slope of the magnetization at B, for dirty
superconductors and for all temperatures was
first calculated by Maki’ and later on corrected by
Caroli ef al.® This corrected version of Caroli
et al. was confirmed by Eilenberger’s® numerical
calculations. Our results for the slope of the
magnetization agree with these findings. The most
interesting aspect of these calculations is the fact
that the triangular arrangement of flux lines gives
the thermodynamically stable configuration as op-
posed to the square lattice. This statement is
even true for all temperatures and all electron
mean free paths, as was shown by Eilenberger. ®
But the difference in the thermodynamical poten-
tials between these two lattices is rather small.
Therefore, it is an interesting question whether
the above statement remains true if one takes
higher-order terms of the quantity (B,- B,;) into
account. Our calculations show that the second
term in this expansion in fact has the tendency to
reduce this difference. This reduction, however,
seems not to be strong enough to lead to a transi-
tion from a triangular lattice, established near
B, to a square lattice at lower fields, and it
certainly is not strong enough for such a transi-
tion at temperatures near T,. Furthermore we
find that the second-order term generally is very

small, suggesting that the magnetization remains
very linear for fields B, well below B.,. This
finding agrees very well with magnetization mea-
surements.

II. PROPERTIES OF EXACT SOLUTIONS

A superconductor with very short electron mean
free path can be described by the following set of
equations derived earlier by the author®:

WF ,(F) - 2D[G ,(F)8%F ,(F) - F,(¥)2%G ,(¥)]

=A[)G,F), ()

G, @)= (1-|F @ |%2, @)
- T - AT)
A(r)In (F) = 2nTwZ>o (Fw(r)- T) , 3)

>

i@®)= % curl curl(B(¥) - B, (T))

=2ieN(0)D71T 2. [FX@

w>0

aF,T)-c.c.]. 4)

Equation (1) follows easily from Eq. (11) of Ref.
6 if Eq. (2) is used. The notation is the same as
that introduced in Ref. 6.

We are looking for solutions of the above set of
equations which show the structure of the vortex-
line lattice introduced by Abrikosov.! We there-
fore assume that the internal magnetic field B(r)
isaperiodic functionin the x-y plane, say, B(r)
=B(x,y)Z. The external magnetic field B, is as-
sumed to be constant in space. Clearly it has to
be parallel to B(F), B,=B,Z. Furthermore we
assume that both A(r) and F,(r) depend only on x
and y and that |A(r)| and [F,(F)| are periodic in
the same manner as B(x,y).

The first important conclusion then follows
from Eq. (4). Letus denote the unit-cell vectors

of the flux line lattice by e,- (*4,9;,0), j= 1 2.
Since B(r) is a periodic function and since A(r)
is defined by

curl(A[F))=B®F), )
the relations
AF+8)=A@)+ox(F 8, j=1,2 (6)

must hold true with certain functions x(t, ;). It
follows then from Eq. (4), i.e., from the periodic-
ity of the current density, that F,(r) behaves like

F, T +&,)=F,(r)exp{- 2ie[x(¥, &,)+KE)]}, (7

and K (€,) are constants. From Egs. (1) and (3) the
same behavior for the pair potential A(r) follows:
AT +&;)=AF) exp - 2ie[x ([T, €)+KE)]}.  (®)

Equations (6) and (8) together with the requirement



4 MAGNETIZATION OF DIRTY SUPERCONDUCTORS. .. 101

that A(r) is a single-valued function lead already
to the flux quantization. This is well known from
the Ginzberg-Landau theory. We will assume
from the very beginning that the flux through a

unit cell of the lattice is given by one flux quantum,

BF =1/e , 9)

where F denotes the area of a cell and B the aver-
aged magnetic field

B=(1/9) [, dxdyB(x,y)= B()). (10)
Without any loss of generality we now write
E1=("1, 0, 0), §g=(x2,y2, 0), (11)
and
AF)=- Byx + &' (T), 12)
with
AE+E)-A'@), B=(url@@®)=0. (3)

It is then an easy matter to show that one can re-
place Egs. (7) and (8) without loss of generality by

F,(F+8)=F,F), aF+&)=Aa®),

F(F +8;)=exp[2ie By, +x5/2)] F o (F), (14)

A(F +8,)=exp|2ie By,(x +x,/2)] A®T).

All the above statements are simply generaliza-
tions of relations known from Ginzburg- Landau
theory. The reader who is interested in more de-
tails is referred to Ref. 9.

III. SERIES EXPANSIONS OF BASIC EQUATIONS

We are interested in solutions of Eqs. (1)-(4)
near the upper critical field B.,. In this region a_
small parameter is given by the difference B, - B
since B approaches B, continuously as the transi-
tion curve is reached. In Eqgs. (1)-(4) an expan-
sion of all relevant quantities into powers of
B,,— B should therefore be possible. But in order
to use the exact relations derived in Sec. II it is
very essential to keep B fixed during this expan-
sion. This means that in the following we will
consider B, as an adjustable quantity. B, is
given as a function of temperature T and transition
temperature T, by the well-known expression

T 1 1
n(7)-2 ey ~5) 09

It is now very convenient to keep not only B but
also T fixed so that B, is now considered to vary
only due to variations of T.. The reason for this

is that the only equation which contains 7', explicitly
is the self-consistency relation (3); Egs. (1), (2),
and (4) depend only on quantities now considered as
fixed, i.e., B and T. Let us then define the pa-

rameters
pe=DeB (T, T,), p=DeB. (16)

The relation between T, and the expansion param-
eter

A=pe-p (17)
then follows immediately from Eq. (15),
T 1 1
—]= - = 18
m(h) 2nT §0<w+p“ w) : (18)

This equation expresses A as a function of T, and

vice versa. For small A we can expand
T 2
ln<T—>=lo+ll7\+lz)t Fooo, (19)
c
with
1 1
l,=21T 2 < - —),
0 w0 \W+p W
1 (20)
l,==21T e
! go (w+p)

Next we expand the quantities A, F,, and A’ into
powers of A. Inspection of Eqs. (1)-(4) shows
immediately that these power series must have
the structure

A= (YA)(Ag+ XA + A28y 421 0),
F=(N)Fo+ Fy+2°Fp .. 0),
G=1+AG+XGy++-0 ,

(21)

Al=nxa;+N%a+....

Here we have dropped the arguments T and w. The
quantities 4,, F,, and a, depend only on B and T.
They are assumed to fulfill the boundary conditions
(13) and (14).

We would like to make some further remarks on
the above series. First of all we cannot prove
whether the above series are convergent. But
nevertheless we believe that it makes sense to
consider the first few terms in these expansions.
Disregarding this difficulty we see that the above
method gives solutions of the basic equations for
a fixed averaged magnetic field B and for fixed
unit cell of the fluxoid lattice. The actual mag-
netic field B as a function of the external parame-
ters B, and T, as well as the shape of the funda-
mental cell, have to be determined by minimizing
the thermodynamical potential. This will be for-
mulated in Sec. IV.

Let us now write the first few equations which
follow from Eqgs. (1) to (4) by inserting the series
(19) and (21). We continue to drop the obvious
arguments ¥, w. From Egs. (2) and (21) it fol-
lows that

Gy=-3|Fo|? (22)



102 KLAUS D. USADEL

Gy=— % |Fo|*= 5(FoFf+c.c.). (23)
We define the symbol
=3~ 2ie Byx. (24)
From Egs. (1), (21), and (22) it then follows that
WFo=-3D383F,= 2, , (25)
WF,- 5D32F =R, + 4, , (26)
with R, given by

Ry=— % 8g|Fy|2+ 5D [~ 4| Fo |253 F,

+21e( 0° Ay +a; . O)FO +%F052§F0’ @

and -
WFy~ 5D 32 Fy= Ry+ A,y . (28)

R, is a fairly long expression and we will not write

it here. From Eqgs. (4)and (21) it follows that
i= L curlcurla, = 2ieDN(0) 1T 2, (F&d,F,— c.c.),
4T w>0
(29)

o= Zlq? curlcurli, = 2ieDN(0)1T 2. [(FF8F,+F¥d,F,)

w>0

—c.c. +4iea;|Fol?].  (30)

Finally we get from Egs. (3), (19), and (21)
A,
Aglo=21T 2 (Fo——“), (31)
w>0 w
Al
Boly+ Aylg=21T 2. (Fy- , (32)
w>0 w
Aa
Agly+ By 1y + 8,lg=21T 2 (Fp- . (33)
w>0 w

Equations (22)-(33) form the basis of the following
work. They enable us to derive the thermodynamic
potential to third order in the quantity (B, - B,).

We begin the discussion of these equations by
considering, first of all, the differential equations
(25), (26), and (28). These equations have to be
solved with the boundary conditions (14), In this
context the eigenfunctions of the operator — D 82
[with boundary conditions (14)] are extremely
important. These functions were discussed ex-
tensively by Eilenberger!® and we also collect
some useful relations in Appendix B. We denote
these eigenfunctions by ¢, (r), i.e.,

- DB, (F)=€, 0, (F) , (34)

and normalize them according to

Y=(/F) [, dxdy o E) 0y (F)= 6,

<¢;(;)‘Px' T

[ v

The eigenvalues €, are given by

€,=Cx+1)p, 2=0,1,2,3,... . (36)

There is no degeneracy of these eigenvalues be-
cause of the boundary conditions (14).

It is well known that 4 in Eq. (25) is propor-
tional to the ground state ¢,, i.e., that

8g(T)= Ago @o(T) . 37

Agp can be assumed to be real and positive.
From Eq. (25) it follows that

Fof, w)= 8(f )/ (W +p) . (38)

Using the completeness of the set {(p)} for func-
tions obeying the boundary conditions (14), we
rewrite Eqs. (26) and (28) as

<¢7 Ry)+{pf A) -
Fy(w,7)= E= e e, (39)
o * *
Folw,7)- 3, xR0 (00 8a) ) 5y (40)

A=0 W+ €,

We now turn our attention to the self-consistency
equations (31)-(33). Equation (31) is automatically
fulfilled because of the definition [Eq. (20)] of I,.
We then multiply Eq. (32) by A,(Y) and integrate
over a unit cell. Using Egs. (20) and (39) it is
easily seen that A; drops out and we are left with

A
(A¥ A)L,=21T 2, (g Ry) (41)
w>0 W+P
From Eqgs. (20), (33), and (40) it follows in a sim-
ilar way that

(A*ag) Ly s (XA, ~2nT ¥ (BdRe) (42)
w>0 W+P

The right-hand side of Eq. (41) is built up with
functions Ay only; it is therefore an explicit equa-
tion for the determination of the amplitude of
Ao(f). Equation (42) determines the important
quantity (Ag4,). But unfortunately this is not an
explicit equation since R, is built up with the full
F, and A,. Consequently we have to know the
quantities (@ A;), x>0, whichfollow from Eq. (32)
by scalar multiplication with ¢f. Using Eq. (39)

we get
vt (- 3)]

(@Fd)l= 20T 3 [M B

w>0 w+€
(43)
or
(PXRy) 1 1 )]1
x —
ey Z;o W +€y Eo wW+p  WHE » A>0.
(44)

The quantities of interest are {(Aq &y and (Afa,).
They can be deduced from Egs. (39), (41), (42),
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and (44) together with Eqs. (29) and (30). We
postpone this calculation to the end of Sec. IV.
Higher-order terms (A FA,) can be deduced in a
similar way. But the evaluation of (Ag4,;) is al-
ready quite complicated and we will not go beyond
this order.

We conclude this section by noting that the above
method of deriving solutions of Egs. (1)-(4) is also
applicable to other situations, for instance, to a
superconducting film in contact with a paramag-
netic layer. The only change is that we have to
reinterpret the pair-breaking parameters p and p,
and the boundary condition Eq. (14) in the appro-
priate way.

IV. THERMODYNAMICS

The difference between the thermodynamical
potentials in the superconducting and the normal
state is given by'!

~ 3. A(r T
¢ = d7< r; + 4T 7

w>0

B{)- E,m}z) :
(45)

GS(r,T) and GY(r,T) denote Green’s functions in

the superconducting and the normal state, respec-

tively. They are related to the quantity G, (1)
|see Eq. (2)] according to

.. - 1
<65 @, 1)-GLE D]+ g |

- - 7TN(0) ~

G3,(F, )= G.@), GMEF)-"0

;. (46)

the second part of Eq. (46) being a consequence of
G,(T) =1 in the normal state. Equation (46) follows
immediately from the definition of the quantity

G, () given in Ref. 6. Using Eq. (46) and the BCS
cutoff
1 T,
2IN(O)T 2, —==+N(0)In (47)
w>o & g T

we rewrite Eq. (45) as

o =[(131f [N(O) fam)|? 1n<—TZ>

[ - la@)I?
+4TTN(0) 2. dw’ (Gw'(r)+ 'A(r,)g'— - 1>
w>0 Jw zw

)—,EG)]Z]. (48)

Equation (45), or rather Eq. (48), has the following
stationarity properties:
__ (i) Stationarity of ¢ with respect to A(f) and
A(T) fixed leads to Eq. (3).
(ii) Stationarity of ¢ with respect to A(F) and A(r)

fixed leads to Eq. (4).
by Eilenberger.

We now insert Egs. (19) and (22) into Eq. (48) and
differentiate the result with respect to X (with B
and T fixed). Using the above stationarity rela-
tions we get for <5 the thermodynamic potential per
unit volume, the following relation:

These relations were shown

33 PM)I=NON (([ 2% + 22 Re(aFa) +- - -

x% AN+ N24e0). (49)
Integrating this equation with respect to A we get
S = B (=0)=EN(0)11 (| 89| A+ F 2N (0) (1(] 8 |*
11, Re{aga2® . (50a)
We neglect all terms which are of higher order
than A%, i.e., [eD(B,.—B)]®. Consequently the

factors in front of A% and )f in Eq. (50a) also may
be expanded in terms of (B - B.;) and we get

®(B)=N(0)(eD)?[a(B - B, +%eDB (B~ B)

+(1/R)B - Be)*].  (50b)

The quantities k, @, and B are given by
k=8m1e?D?N(0), (51a)
a= 31| 8] 5.8, (51b)

2 * 3 9 2
- (12 (180 sty Retazan - f 57 (had] [ |

p =5c2
(51c)

We note that the derivative in Eq.
performed under condition (9).
Eq. (50a) to Eq.

d(A=0)=

which follows immediately from Eq. (48) by using
the expansion

(51c) has to be
In going from
(50b) we used the relation

(1/8m)(B - B,), (52)

BE)=BZ +rcurld, +.... (53)

The minimum of d;CE) with respect to B under
the condition that the shape of the unit cell is fixed
and that Eq. (9) holds true is obtained from Eq.
(50b). Note, however, that although Eq. (50b) has
two extremal points in general, only the solu-
tion which leads to B =B, if B, approaches B, is

relevant. For this B we get
= B,- B, eDEkj 2
B-B,.= Trka)t © Aikay Be-B,) . (54)

The left-hand side of Eq. {54) is equal to 47M,
where M denotes the magnetization per unit volume.
Inserting Eq. (54) into Eq. (50b) we get, for the
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thermodynamical potential as a function of the ex-
ternal parameters T and B,,

(Bee—B.)’  (Bey— B,)’eDkB

OT.Be)= il o)™ ¥ 120(1 + k) 65)
From this the thermodynamical relation
03 =
_¢ = M =—-M (56)

9B, 4n

is recovered. Equation (55) still has to be min-
imized by varying the shape of the unit cell of the
flux-line lattice.

We conclude this section by rewriting Eq. (53)
somewhat. In Appendix A some steps in the eval-
uation of the quantities (] Ayl 2) and Re(AFA,) are
presented. Making use of Eq. (A5) we express the
quantity ,{] Aq|%) and its derivative in terms of
the function !, defined in Eqs. (18)-(20) and we
express Re(AF4A,) by means of Eq. (Al5). We ar-
rive at the following equations:

_ Bc (T)‘Be
-4 = Ty - 1]

1+B,4[265(T) - 1]

3
+a(T) (TAWE(T—)-—T]> [Be(T)- B,J?, (57)

2(2k2)?
[1+8,265- D]

a(r)- 30 {x% Ballils/13)

-1 ([1+BA23-DF

2 2 2
SETCIRT P SN SRR PY
(58)
The quantities B,, By, and y are defined in Eqs.
(AB), (A13), and (A15b). We note that the right-
hand side of Eq. (58) has to be evaluated at the
critical magnetic field B, (7). The parameter
K,(T) [cf. Eq. (AT)] was introduced by Caroli et
al.,® who had already calculated the linear term
in Eq. (57).
V. EVALUATION OF vy

According to Eq. (Al5b), v is given by

y= _211_7‘_2__3 20 (R Ff+c.c. —4e2Da%|Fyl?)).
<[Aol ) w>

0
(59)

F,, denotes the component of F; orthogonal to the
ground state 4; and fulfills the equation

WFy, - $D32F =Ry, + Ay, . (60)

The purpose of the present section is to express
v in terms of integrals over the functions ¢,
[Eq. 39)].

To begin with, we introduce the operators m,,
m,, defined by

USADEL 4

as well as the quantities m,, 7_:

T,=Te+iMy, T =Te—1iTy. (62)
It follows that

[7,, 7.] =- 4B, (63)

—58:ﬂ,17_+2€§. (64)

The vector potential @, which is determined by
Eq. (30) can be assumed to have no 2z component:

ficai+a,p . (65)

We then define

a,=a.tia, (66)
and get

i3, +99=~ a,m_+a.m,), 67)

[7,a]=-~0b, (68)

provided that diva, = 0 is fulfilled. b denotes the
magnetic field given in Eq. (A3), i.e.,
b= (kl;/2eD)(| 8| 2= (| 89| ). (69)
We now rewrite Eq. (27) somewhat differently

using the above definitions. From Eq. (27) together
with Eq. (38) it follows that

Rlz_éwF0]F0|2+%DF052|F0]2

+ieD(3g+3; +3,+00)Fy . (70)
From Eqs. (67) and (68) we get
Ry=- wFy|F|2+ 1D F8%|F |2 - eDbFy-eDm,a_F, .

(71)

Here we used the fact that F is proportional to
the ground state 4,, i.e., that

7.Fy=0. (72)
The component of R, orthogonal to the ground
state 4y will be written as

Ry,,=Ry—eDm,a_F,, (73)
with
Ro= (= 3wFo|Fo|?+$DFo0°|Fo|2 - eDbFy), . (74)

Using then Egs. (64) and (73) we rewrite Eq. (60)
as

(w+p)Fy+ 3D, m_Fy,=Ry—eDm,a_.Fo+ 4y, .  (75)

Now we are going to eliminate the vector potential
a_ from this equation.

First of all we note that Eq. (75) has no com-
ponent proportional to 4, so that we can apply
the operator 7_ without losing any information.



4 MAGNETIZATION OF DIRTY SUPERCONDUCTORS. .. 105

We then define two new functions F and A by
means of

F=m.F, +2%a_.F,, (76)
Aem.Au+2ea. 0, . (77)

Applying the operator 7_to Eq. (75) and inserting
Eqgs. (76) and (77) into this result we arrive at

(+p)F +3Dm.m ,F=m_Ry+A . (78)

The quantity A, has to be determined self-consis-
tently according to Eq. (32). If we apply the op-
erator m_ to this equation and insert Egs. (76) and
(77) into this result we get

Aly=21T 2 <i— i) . (79)
w>0 w

Let us express y in terms of_these new functions
A, F. We define a quantity R, by

7,Ro=R, . (80)
Equation (80) is solvable since R, is orthogonal to
the ground state 4,. It follows from Eqs. (73) and
(80) that

(F#Ry,)=(Ff, (T, Ry~ eD7,a_F))

={(1.F1.)*Ro-eDa.Fy)). (81)

We insert Eq. (76) into Eq. (81) and this into Eq.
(59) and arrive at

(211|T> Z (F*I§0+c.c.)-eD(F-‘*a-F0+c.c.)

-2 (R¥a_Fy+c.c.)). (82)

The term proportional to 5.? has canceled.

In the next step we expand Eqs. (78) and (79) in
terms of the eigenfunctions ¢, defined in Eqs. (34)
and (35) using the well-known relations

T =@, T, Oq=0@, 0B=(6-p)/sD.
(83)
Let us write
Ro:zi Cy@y, Cr={(@¥Ry) . (84)
A=

Solving then Egs. (78)-(80) simultaneously we get
a quantity ﬁo and a self-consistent quantity F which
we insert into Eq. (82). As a result of this simple
calculation we get

41rT Z"’; i [Cratl?
< 2=0 {w>0 W+ €4
C)u-l 2[2/ 1 - 1 )}-1
w>0 W+ €y DO\WHP | W+ €y

% T (9% +c.c.>}. (85)

w>0

+

Now let us consider the quantity (¢p¥a_F,) or
rather (p¥a_¢,). From Eq. (68) it follows for
arbitrary x, \’ that

- (@¥boy) = (@¥m,, a] o))
=0, (PF18.@r) = (P¥a. Oyi) Xyeyy . (86)

Iteratingthis relation and putting A’ =0, it is not
difficult to show that the following relation must
hold true:

(p¥a. o9 _ 2D (%1 b90)
41 €+p
1 o
2D I et e L CRLLA SO
e). u=1 a»z' e a)ﬁlﬂt Medeu #

The series on the right-hand side of Eq. (87) is
convergent for A= 1. Making use of Eq. (69) we
get

(pfa_pg) _ kL, 2
% G 2 <IAOI>

X<<¢f+1|(ﬂo|2(ﬂo)+ Ty ) (88)
1= P €n1— P

The quantity i‘/,\ is defined by

(o

-~

Qeoo O
1 u
T, = 1T e

1 Or e Oy

s

120, (89)

3
it

and depends only on the shape of the unit cell and
not on the magnetic field.
Next we rewrite the quantity C, somewhat.

Making use of Egs. (37), (38), (69), and (74) we
get
zcX - ( w kl, )m my
T a1 572 =G \@apP T 0 p) ™ wepy
(90)
m, is defined by
my= (0¥ ol 0o, (91)

while m, is given according to
my=— 3D (@F0y0% @, |?). (92)

Inserting Eqs. (88) and (90) into Eq. (85) we get

e 5, (et

A=l w0 WHE

2 L;o <;%—p - wje)T

~ "
Cx(w)kll ) [(mx+2x)+c.c.]}. (93)

Ci(w)
w>0 W+E

+

"0 (@+p)(er-p)

We con_clude this section with a discussion of the
quantity m, [(Eq. (92)]. Performing the derivatives
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we get

my=— éD<¢;00[¢080(p0+(80¢0 ‘P0+2[30‘P0' .

94
This result can be cast into the form o
my=2pmy - 3 D{(@F Q0| T, 0o (95)

or with the help of Eq. (83) into
my=200my - (@F [ @1 [*00)) (96)

The term (@] 1 ¢, |2 9y) can be evaluated with meth-
ods described in Appendix B. As a result one
finds

my=p(\+1)m,, (97)
and we can derive from Eq. (90)

- (w+p)+(w+€x) 1, >

C*‘( 2wepf 2w ipy) ™ 99
where we use the definition of «,(7T), i.e.,

2x2=1,/kI% (99)

VI. DISCUSSION

The final result for the magnetization follows
from Eqgs. (57), (58), and (93). But first of all
we have to insert Eq. (98) into Eq. (93). The
w sums which appear during this procedure can
be expressed in terms of the functions /, and some
new functions L, () defined by

L, =21T 2 L

—, Vv=1,2,3... .
wo (W+p)(w+€y)

(100)

We then express k in terms of «Z [Eq. (99)] and
insert v into Eq. (58), and the result of this cal-
culation into Eq. (57). We end up with the following

result for the magnetization:

Bcz(T)_Be (

~ S,[2k%(T) +1] + 28,
— A = - 1]

[265(T) - 1]7

(Be(T)-B.F

| 2E(D)FA(T) + 265(T) Fo(T)] )

[263(T) - 1T° B(T)
(101)
The functions F,(T), F,(T) are given by
_ 21,1p 3(1—BA))
F\(T)= I, <Ss+ YA , (102)

(Ll 1, 3!l3|)§€ 141l plLls) 3pBs
Fa(T)’( aZ TL T 20, ) B4 62 ) B

T syl £l

plz,|L4(2x) 12,1 (L o(2X) + 1,2 1)
( Z T aiL,aon ) (109

USADEL 4
and the quantities S, are defined according to
= |2 _ 3 My im
L SR
(104)

.3 3

Sy = 25, . a(nza Za), S“:W,«f%ﬁlmm”\a .

The two parameters 3, and 83 can be expressed in

terms of m,, as well:
Ba=myg, Bs=2. Imabé (105)

x=0
The equation for Bz is nothing else than the com-
pleteness relation for the functions ¢,. We note

that the parameter S, is related to 8, and Bg ac-
cording to

Sy=Bs/28% . (108)

The proof of this relation is similar to that for Eq.
(A16). In the above equations use has been made of
the fact that m, and £, are unequal to zero only for
even A, see Appendix B.

The parameters S,, as well as the quantities 8,
Bg, depend only on the shape of the unit cell. The
functions F, depend on temperature through p(7)/
27T, which is a universal function of the reduced
temperature ¢t= 7/7T,. The material parameters
of the alloy enter Eq. (101) only through the well-
known quantity k,(7).

We have calculated the parameters S, and the
functions F,(7T) numerically and the results are
shown in Table I and in Figs. 1 and 2, respectively.
From these calculations we learn that the second-
order term of the magnetization is very small, sug-
gesting that the magnetization is quite linear for
fields B, well below B.,. This general feature
agrees very well with measurements of the mag-
netization in increasing fields.* The graphs in
Figs. 1 and 2 show that the functions F, may be-
come negative leading to a negative second-order
term of the quantity —47M for certain values of
temperature and for values of k,(T) very close to
(V2)"'. This behavior, which one would not, per-
haps, expect at first sight, suggests that —47M de-
creases rapidly just above B, in such a way that if
one extrapolates the slope of —47M at B, towards
B, then —47M should drop below this line. We
consider this sharp decrease as an indication of
a very weak repulsion or perhaps even of an attrac-
tion between flux lines for these particular values

TABLE I. Parameters as explained in the text for a
triangular (upper row) and a square (lower row) lattice.

Ba Bz $;x10°  S,x10°  S;x10°  S§,x10
1.160 1.423 1.251 0. 847 5.133 4.563
1.180 1.497  2.133 1.005  4.971 4.551
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of k5(T).

To discuss the dependence of the magnetization
on the shape of the unit cell of the flux-line lattice,
we consider first the Ginzburg-Landau region. For
T~ T, we may evaluate the large parentheses in
Eq. (101) at T, yielding

4= B;q_z(Tg -B, . <51(2x22+ 1)+ZZSZ> [B.o(T) - B, ,
Ba(2k% -1) (2k* -1) B,»(T)

(107)
where k=«k,(7,). From the values in Table I it then
follows that the second-order term in Eq. (107) has
the tendency to reduce the difference in the magne-
tizations of the lattices considered. However, this
does not mean that for low enough B, the square
lattice becomes the stable one. The crossover
of the magnetization curves for the two lattices
occurs at a field 173,3 which is either smaller or just
slightly bigger than the lower critical field B, (T)
which, in the Ginzburg-Landau region, is well
known from numerical calculations.!? Furthermore,
the crossover in the thermodynamical potentials
occurs at an even smaller field than B,. Therefore,
we conclude that the triangular lattice remains the
stable one near T, as far as the first- and second-
order terms are concerned. For temperatures
well below T, the situation becomes more compli-
cated. In general, the second-order term still
has the tendency to decrease the difference in the
magnetizations of the two lattices. For these tem-
peratures, however, no rigorous theory for the
lower critical field B,,(7) exists. Therefore, we
are not sure, at the present time, whether the ex-
ternal magnetic field at which the thermodynamical
potentials for the two lattices become equal lies
well above B,(T). However, it seems to us very
unlikely that this will happen.
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calculations.
APPENDIX A

In this Appendix a calculation of the quantities
(1 Ag'%) and (A% A,) is presented. We start with
(1 Agl?) which is, of course, already known from
the work of Caroli et al.® Combining Eqs. (27),
(34), (38), and (41) we get

(| dol 2y1y= = 21 (| Ao *) = 213 [0 (| A ®
+3D(| A 2521 )
—ieDl, (A, - (A%3,80-c.c.)) ). (AD)

The vector potential 3, is determined by Eq. (29),
which is rewritten as

curl curld, = 4me DN(0) (= 1) i(a%Bpa—c.c.) . (A2)

Making use of the well-known properties of the
Abrikosov solution A, it follows that

curld, = b, = 47e DN(O)L,(| 89| 2 = (| Ao 2))2, (A3)

where use has been made of Eq. (13). The third
term in Eq. (Al) can then be calculated easily:

eD(-ily) (3,(A¥ByA, - c. €. ))

:Z;r—e-ell))N———(—o-) (&,- curlcurld,) . (A4)
Making a partial integration in Eq. (A4), the sur-
face integral of which vanishes because of Eq. (13),
the third term in Eq. (Al) is expressed in terms of
(18l *) and (1Al %)% We note that the second
term in Eq. (Al) vanishes for Abrikosov solutions
Ay. We arrive at the final answer

(| a0l2) = ‘k‘zzj [1+B426UT, B) =D .  (a5)
B4 is defined by
Ba= (| Aq| /((| Ao %)% . (A6)
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FIG. 2. F, as a function of reduced temperature

t=T/T,.
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This quantity depends only on the shape of the unit
cell if Eq. (9) is fulfilled. The quantity k,(7, B) is
defined by

2k3(T, E):;’l@%&%, p=eDB . (A7)

For B= B,,(T) this quantity reduces to the «,(7) in-
J

troduced by Caroli et al.® But we need k,(T, B) also
for fields B slightly smaller than B_,(7) in order to
perform the derivative in Eq. (54). !, in Eq. (A5)
too has to be evaluated at the field B.

Next we turn our attention to the quantity (a¥a,),
or rather its real part. We first write the right-
hand side of Eq. (42) using the definition of R, in
Eq. (28):

20T Rejﬁp&) =21T 2 (=%| Fol 2(F§ay+c.c.) —3w| Fo|® - Lw| Fo| 2(F§Fy+c. c.)
w0 w>0

+%D[—%|Fo§2(F8%3F1+C- c.)+ 5| Fo| 2% Fo| * +3(F§F,+c.c.)8?| Fy|?]

+ieD{2ied}| Fo|® + (&, — 3| Fo| %) (F§5F — c. c. )+ 33, [(F§3,F; + FryFg) - c.c. |}y . (A8)

The quantities Fy and F, clearly depend on w; they
are given by Egs. (38) and (26).

We start the discussion of Eq. (A8) by noticing
that the vector potential 3,, which was defined in
Eq. (30), enters this relation. Fortunately enough,
however, we do not have to solve Eq. (30); we can
eliminate 3, by means of a partial integration.
From Egs. (29) and (30) we get

D (a(F% §oFg-c.c.))= D (G §oFy + Ft3,F)

—c.c. +4ied,| Fo|?)) . (A9)

Next we decompose F; and A; in components pro-
portional and orthogonal to the ground state A,.
Combining Eq. (A8) with Eq. (42) we can then solve
for Re( A, ).

Let us describe this procedure in some more

detail. We write
AJ A
F1=f1A0+F1L, AIZ%A()‘F AJ_. (AlO)
From Eq. (39) it follows that
_(F§Ry) 1 (a§ay)
N Tag?y Y oep (1agd) (A1)
and from Eq. (42) that
ajany, 21T Re(A}R,)
Re<<mol >>“‘"2*<|A012>m>0 w+p
(A12)

Inserting Eqs. (A10) and (A11) into the right-hand
side of Eq. (A12) [which is given by Eq. (A8)], we
get first of all terms which are built up with func-
tions A, only. These terms can be expressed by
the two parameters 8, and 85, where Bj is defined
by

ﬁn=<|Ao|6)/(l Ao|2>8 (A13)

We are then left with terms containing F,,, 4,
and 32, They can be simplified by using the perpen-
dicular part of Eq. (26), i.e.,

wFy, - %D%OZFM =Ry, + Ay, (A14)

to eliminate the term %gFu from Eq. (A8). We
get as a result of this calculation

-leRe(A A1> lg _g D_ls l_4 £4_ 2
<1A(,|2>g +<|A,,|2>2‘:z[(1z ‘4>BB+2 Ba

1y(k1,)?
2

- kIIZSBA(BA -1)+ (Ba - 1)2+ Y:I ’ (Al5a)

with

7=<|T02|“2> 73 (Ry Ff,+c.c. -—4e®Da| Fol?) .
w>0
(A15b)

In deriving these equations we used the following
relation, holding true for Abrikosov solutions A,:

= 3D | 89| 2B Aol ) =p (| A0|®) . (A16)

To prove this relation, onefirstexpresses the term
B%1 A,/ * in terms of gauge-invariant derivations
B3Aq and one can do the same for the quantity

3% Agl 2. Noticing that the left-hand side of Eq.
(A16) is identical to — 3D (| Agl *B%1 Ayl2) one gets
two equations for this quantity from which the odd
terms |54A,! % can be eliminated and Eq. (Al16) fol-
lows immediately.

APPENDIX B

We shall list here some important properties of

the quasiperiodic eigenfunctions of the operator
2 following closely the work of Eilenberger.!? To

simplify formulas we will measure the length in
units of (2¢B)-/ 2, In the following the new coor-
dinates x/(2¢B)"/ % y/(2¢B)" ? are again written
as x, .y. The lattice vectors €, [Eq. (11)] remain
then unchanged, Eq. (9) goes over into
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X, ys=2m, (B1)
and the operators m,, m,, =, will be replaced by

1 9

= i 9y ay

S|

9 X
Y ™ , M= Metimy . (B2)

Let us now define the function'®

)"
x5 exp[— 3(y + 2t — ny,)* + £2 + iny,(x — nx;)] ,(B3)

where f is a generating parameter.
relations can be proved easily:

The following

¢(¥| #) fulfills the boundary conditions (14), (B4a)
.o 0)=0, (B4b)
QDS IPCRIEE-C (Bdc)
cell
@] 0)= (?r.l)vz () (| 0)
=—~——m1 L x| t) (B4d)
(@XNTZ 7 O
(| @ 0)| %=1 (Bde)

The relations (B4a)—(B4e) show that ¢(r!0) is iden-
tical to the function ¢,.((T) used in the main part of
this paper. By applying the operator =, various
times on ¢(t10), a set of orthogonal functions is
created which fulfills the boundary conditions (14).
We assume this set to be complete for functions
satisfying Eq. (14). Equation (B4d) shows how this
set can be derived from the generating function
(Tl ?).

Next we introduce the function

1/4
o[ 1= (2—an

X Z exp[— (y+2f - 3ny,)%+ 262+ iny,(x - Lnxy)] ,
.
(B5)
|

f dx dy
cell 2n

cell

-~ - el
+ (p*< r+3 175
The matrix elements in question can be created by
differentiating Eq. (B13) according to the various
generating parameters ¢, and by using the relations
(B4c), (B9) and the fact that different @, (¥10) are
orthogonal to each other. Let us demonstrate this

o) G| )| t)oF| 1)1 [

t1+t
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which is closely related to ¢(tl¢). Indeed, it cor-
responds to a lattice with fundamental cells of
smaller size but with higher magnetic field, more
precisely the lattice for @ is spanned by the vec-
tors

-

g:e, :52:%62, (BB)
while the relations
19 9

Fo=T— =2yt — (B7)

7. (¥, 0)= i ax 3y

hold true. We note two other important relations:

- _Fr . 1 *
%G|°)=W wﬁ!ohw o7 9@l

t=0
(B8)
and
[ EGEEE N (89)
cell
We can now formulate an addition theorem,
eE+T]0)oF -1'[0)= (1/V2) [3(F| 05F'| 0)
+pE+3&]0)p(F +3€,|0], (B10)

from which the following equation can be derived:

b+t - (|t =ts
) 5(0]25%)

o(F| 1) o(F| t2)=721—[<'p<§

(B11)
We note another useful relation,
l/F)fF dxdy o*(F| 1) (T + 38, ')~ 0

which means that the left-hand side of this equa-
tion approaches 0 if F covers the entire x, y plane.

We are now able to calculate the matrix ele-
ments introduced in Sec. V. First of all it follows
from Eq. (Bl1) together with (B12) that

~ |t +t - |ta+ 1 t,—t ta—t
- 1t iz - 3tls) - 1—la) - 3=l
L2155 26l5%) #(o]5) olo]:3%)

b+t et -t & | ta—t
3 4 ~ 1 1 2 ~ 1 3 4
5 > (p(—z 5 ) (p<—2 3 >] . (B13)

(B12)

on the simple quantity m,.
(B4d) it follows that

From Egs. (91) and

" / dx dy a"
A-(th,)m oy 27 EY
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x o* (t] Ho*(F] 0) (B14)

Using Eq. (B13) with ¢, =¢ and t,=t3=¢t,=0, we get

o] 0)p(F|0) .

1
@A)
dxdy o [. t @
X‘Ln 21 ot I:QD*< 2) w(f‘lO)qo < >¢(0\0)
o (e-3]5) o 5(9) #(315) Bl
(B15)

Using the orthogonality of different function
&,(t10) we see that only the quantities @* (0l 3¢) and
*(3é,! 5t) have to be differentiated. With Eq.

(B9) we then get the answer

1
TP NIA

\ > >
ar [70]5) o010 2 (3]5) a(3 ]
(B16)

Similar but slightly more complicated formulas are
obtained for the quantities #,, 3, introduced in
Sec. V.

In the following we will consider only two types
of lattices, the square lattice and the triangular
lattice. We begin our discussion with the square
lattice which is defined by

x1=y,=(2m" 2= ¢ ,

t=0

x,=0 . (B17)

We are interested in the derivatives of the quanti-
ties @(0l3¢) and @(3é,! 3t) which can be derived
easily from Eq. (B5). We get

A + @
e ar 2(0fz) - 2 G

(B18)
L2 (B
N7z 5 A2 |2

1
Ah(g E ).')

Ax(g )= >
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= 5 (=1)re

n=z=

-t/ 22 Hy (k)

OO (B19)

The quantities H,(x) denote the Hermitian polyno-
mials, normalized according to

H,,1(x)=xH,(x) - \H,_(x), Hy=1, Hy=x. (B20)
A triangular lattice is defined by
X192=21, X /x=2, ¥p/x1=2V3 . (B21)
With
EEyg=(vﬁ3~77)”2, 17231/4/21/2’
we obtain
PP | 3 _ (.|t
Ax(&)—()\!)ﬂz 31" (p<0\2>
) = 2_ 02, s Hy(nk)
:(\/n)n;xe ne/ 2%~ 4 /4-)%317'5 (B22)
’ 1 o* €y t
AO=anTe o Az |2
(Y - n o -(ne/ 2)2 i ,/4Hl(7l£
Vn )MZM (-D)"e (—M—){Tg (B23)

Only derivatives with an even X are unequal to zero
since the Hermitian polynomials are even or odd
functions.

Finally we express the matrix elements from

Sec. V in terms of the functions A4,, A,. We get

my = (2 V2 LAx A + AXA), A=0,2,4,... (B24)

n-1/2 Alm! \2 PR
Ex— ny +(2Y) ZJ <m> (A;f,,mAm+A;f¢mAm) y
X=2,4,... (B25)
my=p(X+1)m, , 1=0,2,4,6, .. (B26)

These relations hold true for both lattices if A, is
interpreted as A, for a triangular lattice. We note
that the quantities m,, ix, and m, are real for both
lattices. Equations (B24)-(B26) were used for the
numerical calculation.
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